Episodic-like memory for what-where-which occasion is selectively impaired in the 3xTgAD mouse model of Alzheimer's disease.
نویسندگان
چکیده
Episodic memory loss is a defining feature of early-stage Alzheimer's disease (AD). A test of episodic-like memory for the rat, the What-Where-Which occasion task (WWWhich), requires the association of object, location, and contextual information to form an integrated memory for an event. The WWWhich task cannot be solved by use of non-episodic information such as object familiarity and is dependent on hippocampal integrity. Thus, it provides an ideal tool with which to test capacity for episodic-like memory in the 3xTg murine model for AD. As this model captures much of the human AD phenotype, we hypothesized that these mice would show a deficit in the WWWhich episodic-like memory task. To test the specificity of any episodic-like deficit, we also examined whether mice could perform components of the WWWhich task that do not require episodic-like memory. These included object (Novel Object Recognition), location (Object Location Task, What-Where task), and contextual (What-Which) memory, as well as another three-component task that can be solved without reliance on episodic recall (What-Where-When; WWWhen). The results demonstrate for the first time that control 129sv/c57bl6 mice could form WWWhich episodic-like memories, whereas, 3xTgAD mice at 6 months of age were impaired. Importantly, while 3xTgAD mice showed some deficit on spatial component tasks, they were unimpaired in the more complex WWWhen combination task (which includes a spatial component and is open to non-episodic solutions). These results strongly suggest that AD pathology centered on the hippocampal formation mediates a specific deficit for WWWhich episodic-like memory in the 3xTgAD model.
منابع مشابه
Increased Hippocampal Excitability in the 3xTgAD Mouse Model for Alzheimer's Disease In Vivo
Mouse Alzheimer's disease (AD) models develop age- and region-specific pathology throughout the hippocampal formation. One recently established pathological correlate is an increase in hippocampal excitability in vivo. Hippocampal pathology also produces episodic memory decline in human AD and we have shown a similar episodic deficit in 3xTg AD model mice aged 3-6 months. Here, we tested whethe...
متن کاملThe recent development in synthesis and pharmacological evaluation of small molecule to treat Alzheimer's diseases: A review
Alzheimer's disease is a neurological disorder in which the death of brain cells causes memory loss and cognitive decline. A neurodegenerative type of dementia, the disease starts mild and gets progressively worse. Like all types of dementia, Alzheimer's is caused by brain cell death. The most common presentation marking Alzheimer's dementia is where symptoms of memory loss are the most promine...
متن کاملThe recent development in synthesis and pharmacological evaluation of small molecule to treat Alzheimer's diseases: A review
Alzheimer's disease is a neurological disorder in which the death of brain cells causes memory loss and cognitive decline. A neurodegenerative type of dementia, the disease starts mild and gets progressively worse. Like all types of dementia, Alzheimer's is caused by brain cell death. The most common presentation marking Alzheimer's dementia is where symptoms of memory loss are the most promine...
متن کاملHippocampal synaptic activity, pattern separation and episodic-like memory: implications for mouse models of Alzheimer's disease pathology.
The present review summarizes converging evidence from animal and human studies that an early target of amyloid pathology is synaptic activity in the DG (dentate gyrus)/CA3 network. We briefly review the computational significance of the DG/CA3 network in the encoding of episodic memory and present new evidence that the CA3/DG pattern of activation is compromised in a mouse model of amyloid pat...
متن کاملAllopregnanolone reverses neurogenic and cognitive deficits in mouse model of Alzheimer's disease.
Our previous analyses showed that allopregnanolone (APalpha) significantly increased proliferation of rodent and human neural progenitor cells in vitro. In this study, we investigated the efficacy of APalpha to promote neurogenesis in the hippocampal subgranular zone (SGZ), to reverse learning and memory deficits in 3-month-old male triple transgenic mouse model of Alzheimer's (3xTgAD) and the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of Alzheimer's disease : JAD
دوره 33 3 شماره
صفحات -
تاریخ انتشار 2013